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Abstract 

I illustrate existing methodological approaches for non-parametric unfolding procedures to 

optimally classify justices serving on the United States Supreme Court. The purpose of which is 

to introduce a method of spatial voting that is both intuitive and less demanding than advanced 

statistical approaches. I begin by providing a descriptive analysis of alternative scaling methods 

before introducing the computational optimal classification procedure. Next, I employ 1,197 

non-unanimous cases decided by the Rehnquist Court to illustrate the optimal classification 

procedure in a single dimension, which I subsequently compared to a W-NOMINATE statistical 

approach. I ultimately conclude by noting how optimal classification provides a useful 

introduction to models of spatial voting.  
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I. Introduction 

Measures of judicial ideology are routinely a subject of interest for scholars (e.g., Epstein, et al. 

2007; Martin and Quinn 2002; Segal and Cover 1989). These measures are largely built on the 

premise that jurists can be organized into a policy space of ideological liberalism and 

conservatism to the same degree that we associate with legislators. With this, early attempts to 

frame judicial ideology – most prominently the justices of the Supreme Court – were often built 

as a reflection of uncomplicated measures of attitudinal voting behavior (e.g., Segal and Spaeth 

1993, 2002). This generally began with a contextual reading of the Court’s decisions to assess 

competing liberal and conservative-leaning positions. Scholars have routinely taken advantage of 

tools like the Spaeth, et al. Supreme Court database, which provides dispositions and a broad 

collection of other important information for every case ever decided by the Court. With this, a 

simple tally of which justices formed the majority and minority coalitions reflective of the liberal 

and conservative positions in the case produces individual-level voting behaviors. Expanding this 

to include a large sample of cases across a single (or successive set of) term(s) produces an 

ordinal ranking of the justices. For example, consider the following cases from the Court’s 2017-

2018 term (Table 1), where (1) corresponds with a justice voting for a liberal position in the case 

and (0) corresponds with the conservative position:  
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Table 1. Supreme Court Justices’ Votes on 5 Non-Unanimous Cases (2017-2018) 

 

 Collins v. 

Virginia 

Marinello 

v. US 

Murphy 

v. NCAA 

Artis v. 

D.C. 

McCoy v. 

Louisiana (%) Liberalism 

Roberts 1 1 0 1 1 0.800 

Kennedy 1 1 0 0 1 0.600 

Thomas 1 0 0 0 0 0.200 

Ginsburg 1 1 1 1 1 1.000 

Breyer 1 1 0 1 1 0.800 

Alito 0 0 0 0 0 0.000 

Sotomayor 1 1 1 1 1 1.000 

Kagan 1 1 0 1 1 0.800 

Gorsuch 1 1 0 0 0 0.400 

 

 From these votes, we can calculate the proportion of times that an individual justice voted 

for the liberal position. The results produce a rank-ordering of the justices from Most Liberal to 

Most Conservative (Figure 1). In essence, they replicate the same procedure that produces the 

multitude of interest group scores by constructing a measure of ideological preferences rooted in 

the proportion of times that a voter indicates support for a preferred position. A similar rank-

ordering procedure is routinely reproduced by Segal and Cover using popular news editorials to 

discern classifications of ideology for nominees to the Supreme Court (see Segal and Cover 

1989).  

Figure 1. Supreme Court October Term 2017-2018 Liberalism 

 

 Yet, while these scores are surely intuitive, they face several empirical shortcomings. For 

one, there are several situations where a perfect voting record on non-unanimous decisions can 

produce rank-ordered ties between justices when the measure is based on the proportion of 

policy position support – like which we can see from Figure 1. This wouldn’t be as much of a 
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concern if not for the reality that perfect spatial voting among voters – and especially so for 

legislators – is notably uncommon, and even so among alike partisans (see Poole 2005). A 

second concern is that sometimes the policy positions are not neatly discernable. Perhaps the 

greatest misconception about the Supreme Court is the belief that every case they review 

concerns some hyper-salient social or political issue where neatly defined policy positions can be 

easily identified. In reality, a substantial portion of the Court’s docket are mundane cases and 

controversies where the justices serve largely as mediators. For example, consider the Court’s 

2019 decision in BNSF Railway Company v. Loos, which concerned a former railroad 

employee’s liability to pay their share of taxes owed under the Railroad Retirement Tax Act 

(RRTA). The case specifically questioned whether damages for lost wages that were awarded by 

a jury as a result of a negligence claim were considered compensation and thus subject to 

employment taxes. Using a legal doctrine similar to previous holdings related to the Social 

Security Act (e.g., Board v. Nierotko 1946; United States v. Quality Stores 2014), the Court ruled 

7-2 that lost wages are indeed considered compensation and taxable under the RRTA. The 

overarching question that emerges in a case like this is how to neatly disseminate between the 

liberal and conservative positions? As cases move more towards clarifying ambiguity in the law 

rather than considering substantive constitutional questions, discerning policy positions surely 

becomes increasingly difficult. The same distinctions can be made about legislative voting. This 

limitation often pushes observers to measure voting behavior on policies with easily identifiable 

positions, which will almost surely reduce the sample size and not be reflective of aggregate 

voting behaviors. A final concern is that the sample set of votes in Table 1 is noticeably small 

(n=5). Surely, we could expand the sample set to include more votes, but a measure rooted in 

proportionality still runs a greater risk of ties. Nonetheless, even interest group scores like those 



 5 

from Americans for Democratic Action (ADA), which represents one of the most frequently 

used proportion-based scores for American legislators, often rely on small samples of votes. 

ADA only considers the 20 pieces of legislation that they deem most important for their 

organization, which of course is a remarkably small sample of the total pieces of legislation that 

might be voted on in a given Congress. There are other concerns, but these constitute some of the 

most frequently cited and outstanding. 

 With this, scholars have moved towards alternative measures derived from scaling 

procedures. The emergence and intrigue associated with Poole and Rosenthal’s seminal works on 

NOMINATE (e.g., Poole and Rosenthal 1985, 2000, 2001) motivated a surge in the social 

sciences to develop scaled representations of ideology. Among these, a handful of dominant 

measures of Supreme Court ideology began to emerge. These include, but are not entirely limited 

to, Adam Bonica’s DIME common space (2019),  Giles, Hettinger, and Pepper (GHP) scores 

(2001), Michael Bailey’s Bridged Common Space Ideal Points (2007), and Martin-Quinn scores 

(2002). While Bonica’s and Bailey’s scores are rooted in constructing a common space for cross-

institutional actors, Martin-Quinn and GHP remain solely in the domain of judicial actors.1 

Though each approach their estimation marginally different, the core concepts tend to remain 

consistent: employing a Bayesian (or an alike statistical) approach to estimate ideal points rooted 

in observable voting behaviors that are representative of an underlying dimension of voter 

preferences.  

 However, estimating ideal points using a Bayesian approach – for example, an Item 

Response Theory (IRT) model – can be a daunting experience for those first being introduced to 

 
1 Note: Though they can be, and have been, translated into a common space reflective of Poole-

Rosenthal’s NOMINATE scale through Epstein, et al.’s (2007) work on the judicial common 

space.  
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the theories of spatial voting. Yet, an introduction to this subset of political science does not 

actually require advanced statistical skills. While the next section might employ some technical 

language, the procedure for employing optimal classification – especially in a single dimension – 

only requires a basic understanding of addition and subtraction.  

II. Manual Optimal Classification 

Optimal classification (OC) in the context of parliamentary voting considers a simple question: 

When comparing a group of legislators’ roll call voting behaviors, what is the rank-ordering of 

the members that optimally reduces the number of classification errors? In essence, if we 

consider the voting behavior of legislators across a term of voting, how can we classify their rank 

ordering in such a way that we cannot improve the maximum classification of the scale? This 

work aims to reserve these core considerations of voting but transfer the behavior of focus (i.e., 

legislative roll call voting) to justices of the Supreme Court.  

 Before outlining the optimal classification procedure, it is necessary to consider the 

underlying parameters and assumptions, which are noticeably flexible and undemanding. The 

OC scaling method represents a class of nonmetric unfolding procedures. As Poole (2005) notes, 

“It is ‘unfolding’ in that the roll calls are treated as preferential choice data and parameters for 

individuals (legislators) and stimuli (roll calls) are being estimated. It is ‘nonmetric’ in that no 

assumptions are made about the parametric form of the legislators’ true preference functions 

other than that they are symmetric and single-peaked” (p. 46-47). This work will also assume 

that the justices vote deterministically, as opposed to probabilistically.2 This means that the 

 
2 Note: Though Poole (2005) does illustrate that the procedure can be classified probabilistically 

with the incorporation of random error such that a voter’s overall utility for voting yea is the sum 

of a deterministic utility and random error. Formally, a justice i would vote yea(y) on case j if 𝑈𝑖𝑗𝑦 

> 𝑈𝑖𝑗𝑛 where 𝑈𝑖𝑗𝑦 =  𝑢𝑖𝑗𝑦 + 𝜀𝑖𝑗𝑦 
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justices will vote for the alternative closest to them in a policy space as utility maximizers. 

Formally, if a justice(i) is deciding between voting liberally(l) or conservatively(c) on a case(j),
3 

justice i will vote liberally if 𝑈𝑖𝑗𝑙 > 𝑈𝑖𝑗𝑐. 

 Compared to the techniques employed for interest group scores described previously, 

optimal classification corrects for several shortcomings. First, deriving policy positions on votes 

are no longer required. Rather than asking whether a justice supported a liberal or conservative 

position, we simply need to know how they voted in comparison to the other justices who voted 

on the same cases. In essence, the process is rooted in comparative voting on alike cases rather 

than simply discerning their proportional support of a position. In a similar vein, it is now 

possible to observe the aggregate voting record rather than a small sample that is rooted either in 

an interest group’s perception of important cases or those where it is easy to derive policy 

positions. Finally, without needing to know the policy position and having access to a much 

larger sample size, this almost surely reduces the propensity of rank-ordered ties. That’s not to 

say that it entirely eliminates the possibility of perfect voting – though it is very unlikely with 

enough votes, but an optimal rank ordering assures that no two justices will occupy the same 

position.  

At its core, the OC process in a single dimension consists of two sequentially repeated 

algorithms: a cutting point procedure and a legislative procedure.4 Poole (2000, 2005) illustrates 

this procedure of one-dimensional maximum classification scaling (the Janice algorithm) with 

exceptional precision, and I will review these procedural steps. However, I will begin to 

 
3 Note: I classify a liberal vote as the equivalent of voting yea (or 1) in a parliamentary voting 

structure. However, the identification choice is reflexive – i.e., identifying a conservative vote as 

yea does not alter the classification. 
4 Note: Or a cutting plane procedure in two-dimensions.  
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supplement the key terminology from Poole’s application of the procedure to legislators with its 

counterparts for classifying justices of the Supreme Court. Terms in italics and parentheses will 

denote the terminology in the context of parliamentary voting. 

1. Let p (1…,p) denote the number of justices (legislators), q (1…,q) denotes the number of 

non-unanimous cases (roll calls) decided by the Court, and s (1…,s) denotes the number 

of voting dimensions. In this context, the number of dimensions will be fixed at one. The 

resulting p x s matrix (p x 1, where s = 1) contains the ideal points of each justice denoted 

xi. The first step requires the estimation of starting values for xi, which will be iteratively 

improved upon throughout the classification procedure. To do so, calculate an agreement 

score matrix whereby the agreement score between two justices is the proportion of times 

that they jointly vote the same way across cases. The agreement matrix is subsequently 

squared and double-centered. The resulting eigenvectors will produce the starting values 

for each justice (xi) and classify them as a rank order. Following this procedure is useful 

because it provides an objective set of starting values reflective of the population’s voting 

behavior. However, this technical approach is not an absolute requirement. Considering 

that the underlying premise of OC is to optimize classification from an initial rank-

ordering, the initial ordering does not need to be perfect, but it should nonetheless be 

rooted in expectations better than simply guessing. For example, we could surely 

presume that Justice Ruth Bader Ginsburg would have a liberal-leaning voting record 

while Justice Samuel Alito would be conservative-leaning. Yet, filling the remainder of 

the space, at least as a starting point for classification, should ideally be rooted in an 

analysis of their proportional agreement and the distance between justices on alike cases 

rather than simple inference. 
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2. Fixing initial ideal points for xi, the next step is to employ Poole’s Janice algorithm by 

locating the optimal cutting point ordering. For every case j, there will be one cut point n 

that optimizes the classification procedure. This means that for every case j, there exists a 

cutting line that separates justices who would vote liberally from those who vote 

conservatively at a point that maximizes the number of correct classifications. This point 

would also reflect where the number of incorrect classifications – i.e., instances where a 

justice would predictively vote liberally but instead votes conservatively (or visa-versa) – 

are minimized. Notice too that the classification method does not deter the possibility of 

two (or more) optimized cut points. In this case, the algorithm will select the cut point 

closest to the center of the rank order. To illustrate, Table 2 offers the initial cut points for 

each of the original (5) cases. The justices’ initial starting points xi were strategically 

selected in such a way as to increase the number of initial classification errors.  

Table 2. Initial Cut Points of Sample Supreme Court Cases (2017-2018 Term) 

Case Gi Ka S Ke B T R Go A Errors 

Collins 1 1 1 1 1 1 1 1 0 0 

Marinello 1 1 1 1 1 0 1 1 0 1 

Murphy 1 0 1 0 0 0 0 0 0 1 

Artis 1 1 1 0 1 0 1 0 0 2 

McCoy 1 1 1 1 1 0 1 0 0 1 

           

                                                    Murphy               Artis                 McCoy    Collins 

                                                                                                                     Marinello 

Note: Gi= Ginsburg, Ka= Kagan, S= Sotomayor, B= Breyer, R= Roberts, Go=Gorsuch, A= 

Alito, T= Thomas, and Ke=Kennedy. 

 

3. With such an abundance of initial classification errors, the final original step would be to 

construct cut points that minimize the number of classification errors using the Janice 

algorithm. This process should be repeated until the number of classification errors is 
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minimized. The resulting rank ordering with optimal cut-points is illustrated in Table 3. To 

reiterate, there is no assurance that this procedure will produce a rank order where the row 

classifications produce zero errors. Instead, the objective is to optimize the classification 

in such a way that the errors are minimized.  

Table 3. Optimal Cut Points of Sample Supreme Court Cases (2017 Term) 

 

Case Gi S Ka B R Ke Go T A Errors 

Collins 1 1 1 1 1 1 1 1 0 0 

Marinello 1 1 1 1 1 1 1 0 0 0 

Murphy 1 1 0 0 0 0 0 0 0 0 

Artis 1 1 1 1 1 0 0 0 0 0 

McCoy 1 1 1 1 1 1 0 0 0 0 

           

                                      Murphy                             Artis   McCoy  Marinello  Collins 

Note: Gi= Ginsburg, Ka= Kagan, S= Sotomayor, B= Breyer, R= Roberts, Go=Gorsuch, A= 

Alito, T= Thomas, and Ke=Kennedy. 

  

III. Optimal Classification in R 

The steps listed above from Poole’s Spatial Models of Parliamentary Voting (2005) provide a 

step-by-step illustration of optimal classification. Using a sample of binary choice votes and a 

basic understanding of addition and subtraction, the application is noticeably simple. However, 

as one might expect, optimally classifying voters – even in a single dimension – becomes 

increasingly difficult as the number of voters (i) and cases (j) increase. Optimally classifying 

nine justices of the Supreme Court across five cases in a single term might only require a few 

minutes of effort, but hundreds of cases across multiple successive terms is a challenging task. 

Luckily, Poole and others in the field have translated the intuition behind the optimal 

classification procedure to convenient and adaptable CRAN packages in R. I will illustrate these 
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easy-to-use packages to optimally classify the Supreme Court by focusing on every non-

unanimous case decided during the Rehnquist Court between 1986 and 2005.5  

III. A. Upload Packages 

A collection of CRAN packages will be used to run optimal classification in R – the primary of 

which will be the oc package from Poole, Lewis, Lo, and Carroll.6 Before moving any further, be 

sure to install each and upload their respective CRAN libraries.  

#install.packages(“pscl”) 

#install.packages(“gdata”) 

#install.packages(“oc”) 

#install.packages(“wnominate”) 

#library(pscl) 

#library(gdata) 

#library(oc) 

#library(wnominate) 

 

III. B. Preparation 

Begin by constructing an empty data frame in R where the number of columns represents the 

number of cases, and the rows represent the number of Supreme Court justices. I was able to 

collect data from the Spaeth, et al. Supreme Court database for every non-unanimous case 

decided by the Court between 1790 and 2020 – though we will disaggregate to only include the 

Rehnquist-era cases in subsequent steps. Across the history of the court, this amounted to 8,629 

non-unanimous cases (column value) and 113 justices (row value). The next step is to fill the 

frame with the vote each justice offered across each case. Subsequently construct a vector of 

justice names (justice_name) that will be used to assign row names. Specific column names (e.g.,  

 
5 Note: The full R-script will be provided in Appendix A.   
6 Note: The primary package was removed from the official CRAN repository, but archived 

versions and guides can be accessed at: https://cran.r-project.org/src/contrib/Archive/oc/  

https://cran.r-project.org/src/contrib/Archive/oc/
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official case names or titles) can also be applied for each case, though I opted to simply assign a 

numerical value to each column.  

##Create Data Frame ##  

#oc <- matrix(justice_name, nrow = 113, ncol=8629) 

#oc[1,1] #<- looks at column 1 row 1 (JJAY Case 1) 

#rownames(oc) <-justice_name 

#colnames(oc) <- c(1:8629) 

#justice_name = (#Insert justice names separated by quotes and 

commas#) 

#rownames(oc) <-justice_name 

#colnames(oc) <- c(1:8629) 

#oc[oc == justice_name] <- 9 #The original macro code left the 

replacement cell value as the justice’s name ID if they did not vote 

on the case. This replaces each situation where the cell value is the 

justice’s name with the number 9 (Did Not Vote) 

 

III. C. Measurement in One-Dimension 

With the primary data frame constructed and the packages uploaded, we can now optimally 

classify the Rehnquist Court (1986-2005). The first step is to disaggregate the mass of cases from 

across the Court’s history by selecting only cases from the Rehnquist Court. To do this, create an 

object in R that you define as the columns corresponding with the cases from that period. Doing 

so produces a new object where each column vector represents a case along with each row 

corresponding with a justice’s vote.  

#rehnquist <- oc[,c(6803:8000)] 

The next step is to define polarity. As noted previously, optimal classification can 

iteratively optimize the classification from an initial rank ordering. However, just as 

NOMINATE requires starting positions (priors) to define the space, optimal classification 

requires a basic assumption of polarity as a means to define the directionality of the scale. This 

can be provided by denoting which justice could theoretically represent the most liberal or 
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conservative member of the Court. Assuming you know each case’s disposition and policy 

positions, a simple way to derive this might be to just measure the proportion of times a justice 

voted liberally or conservatively across a large sample of cases. Another might simply be 

selecting a member based on the inference that history defines them as the most partisan justice 

on the bench during that given era. Regardless, selecting a justice whose preferences align (very) 

near or at the end of the spectrum is important to derive the correct inferences from the resulting 

rank ordering. For the Rehnquist Court, I defined Justice Clarence Thomas as the most 

conservative member. When the rank order is produced, I will be able to reference the location of 

Justice Thomas to infer the directionality of the scale – i.e., dependent upon where Thomas is 

ordered, I can infer that to be the conservative wing of the scale.  

#REST1_rehnquist <- 105 #Note: Thomas is the 105th row of the 

justice_name list 

 

Once polarity has been defined, the next step is to define a roll call object for running 

optimal classification. This requires the coordination of two commands: the roll call command in 

Simon Jackson’s pscl CRAN-Package7 and the oc command from Poole, et al.’s oc CRAN-

Package. Roll call creates an object class in R for binary choice data to analyze legislative 

voting, though we can define the voting data from Supreme Court decisions for an easy 

translation.  

#rcd_rehnquist <- rollcall(data=rehnquist, yea=1, nay=0, missing=, 

notInLegis=9, desc="Rehnquist Court", legis.names=justice_name, 

vote.names=colnames(oc)) 

 

 
7 For help and reference, please visit: https://cran.r-project.org/web/packages/pscl/pscl.pdf   

https://cran.r-project.org/web/packages/pscl/pscl.pdf
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Data represents the object of disaggregated cases from the Rehnquist Court, yea 

represents the liberal voting position (1),8 nay represents the conservative voting position (0), 

and notInLegis (9) is used to code justices who did not vote on the case because they were not on 

the bench at that time. Especially since Chief Justices will experience turnover of associate 

justices during their tenures, it is important to rank order based solely on how the justices voted 

on cases where they actually participated. Legis.name represents the vector list names of the 

justices (justice_name) and vote.names represent the column names coinciding with each case 

from the period. The final step is to optimally classify the justices using the parameters defined 

in the roll call object.9  

#oc_result_rehnquist <- oc(rcd_rehnquist, dims=1, 

polarity=REST1_rehnquist, minvotes=20, lop=0.005) 

 

The oc command produces several noteworthy results beyond just the rank ordering of 

the justices themselves, such as the optimal classification of the roll calls (cases), the 

identification of the number of dimensions classified, and the eigenvalues, fits, and identification 

of the object class. Further, the object also lists classification performance metrics within the 

legislators (justices) and roll calls (cases) subsets. This includes the number of correctly and 

incorrectly classified justices and cases using the Janice (and Edith) algorithm, which is surely 

useful for gauging the accuracy of the rank order.10 It is always important to reference these 

measures before continuing because regardless of the number of cases or justices included in the 

 
8 Note: Defining yea as liberal and nay as conservative was an arbitrary decision. Using the 

opposite inference (yea = conservative and nay = liberal) will not alter the results.  
9 Note: minvotes represent the minimum number of votes that a justice needs to have offered to 

be included in the dataset. If that threshold is not met, they will not be included in the optimal 

ordering.  
10 Note: Performance metrics can be accessed for the justices via oc_result_rehnquist$legislators, 

and for the cases via oc_result_rehnquist$rollcalls 



 15 

data, the oc package will always produce a rank order, assuming that the command is constructed 

correctly. However, if there is a substantial degree of incorrectly classified voters and votes, then 

the accuracy of the ordering is surely questionable. There is no pre-defined test or threshold for 

determining what degree of inaccuracy means the ordering is questionable, but it is important to 

ensure that the rank ordering isn’t overwhelmingly plagued by inaccurate classifications. Table 4 

reproduces the classification performance metrics from the optimally classified Rehnquist Court, 

which illustrates a substantially greater degree of correct classifications than incorrect.  

Table 4. Performance Classification Metrics of Optimally Classified Rehnquist Court 

 

Justice Rank Correct Yea Wrong Yea Wrong Nay Correct Nay 

WJBrennan 2 178 4 7 189 

BRWhite 8 462 35 6 84 

TMarshall 1 197 2 3 250 

HABlackmun 4 358 47 8 229 

LFPowell 7 93 9 2 9 

WHRehnquist 14 738 3 142 299 

JPStevens 3 534 61 75 512 

SDOConnor 10 893 94 25 170 

AScalia 12 777 44 61 300 

AMKennedy 11 795 59 68 139 

DHSouter 9 574 62 3 163 

CThomas 13 452 17 28 232 

RBGinsburg 6 388 23 7 176 

SGBreyer 5 314 29 48 148 

%  93.24 6.76 14.27 85.73 

 

The rank values in Table 4 represent the optimally classified ordering of the Rehnquist 

Court. However, a few additional steps are required before plotting. Most importantly, the non-

necessary justices need to be defined and removed – i.e., justices who were not on the Court 

during the analyzed period. This is not always necessary if the original dataset only included 

specific justices that coinhabited the same period, but R will not automatically drop justices from 
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the justice_name object that we used to define the roll call command. Since every justice across 

the Court’s history is included in the initial calculation, begin by creating an object that 

represents the rank order. Second, because non-necessary justices will be ranked as NA in the oc 

object (oc_result_rehnquist), run a replace command that substitutes the value with a large 

numerical value that we will omit from the scale in the succeeding plot.  

#x_rehnquist <- (oc_result_rehnquist$legislators[,7]) 

#x_rehnquist <- ifelse(is.na(x_rehnquist),999,x_rehnquist) 

 

Next, we can begin to build the parameters for the plot. Many of the elements included 

here are not required and can be adjusted based on the desire and needs of the author, but I’ve 

come to believe that this produces the cleanest illustrations.  

#Marker labels for the plot 

#marker_rehnquist <- justice_name 

#marker_missing_rehnquist <-ifelse(is.na(marker_rehnquist),1,0) 

#Height of the marker labels 

#height_rehnquist <-rep(1, 113) 

#height_rehnquist[] <-1.10   

#X-axis label 

lablist <- as.vector(c("More Liberal", "More Conservative")) 

#Plot construction 

#plot(x_rehnquist,height_rehnquist,type="n", 

       main="Polarity of United States Supreme Court \n (Rehnquist 

Court, 1986-2005)", 

       xlab="", 

       ylab="", 

       xlim=c(1,14), 

       ylim=c(1,1.5),cex=1.5,font=2, axes=FALSE)  

text(seq(2, 13, by=11), par("usr")[3] - 0.05, labels = lablist, srt = 

0, pos = 1, xpd = TRUE, cex=0.75) 

abline(h=0.99) 

# Plot Markers and Add Justice Names  

# i <- 1 

  while (i <= length(x_rehnquist)){ 

    if(x_rehnquist[i] < 99){     
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        segments(x_rehnquist[i], 0, x_rehnquist[i], 

height_rehnquist[i])  

              if(marker_missing_rehnquist[i] != 1){   

        

text(x_rehnquist[i],height_rehnquist[i]+.03,labels=justice_name[i],col

="black", cex= 0.85, srt=90, adj=0) 

      } 

    } 

  i<-i+1 

  } 

 

This will produce Figure 2, which illustrates the optimal classification of the Rehnquist Court.  

Figure 2. Optimal Classification of the Rehnquist Court (1986-2005) 

 

 Some initial observations that emerge from Figure 2 are that the wings of the scale – both 

liberal and conservative – appear to coincide with historical interpretations of the justices’ 

ideological leanings during the Rehnquist era. Justice Thurgood Marshall, who founded the 

NAACP Legal Defense and Education Fund, served as lead counsel in landmark civil rights 

cases like Brown v. Board of Education (1954), and was historically championed for his liberal 

activism on the bench is firmly classified as the Court’s most liberal member, even though he 

would only serve until 1991. Perhaps surprisingly, Chief Justice Rehnquist was classified as the 

most conservative member rather than Justice Thomas, who I had originally expected to fit that 

distinction. However, this result highlights an interesting benefit of optimal classification that 

Polarity of United States Supreme Court 

 (Rehnquist Court, 1986-2005)

More Liberal More Conservative

W
J
B

re
n

n
a

n

B
R

W
h

it
e

T
M

a
rs

h
a

ll

H
A

B
la

c
k
m

u
n

L
F

P
o

w
e

ll

W
H

R
e
h

n
q
u

is
t

J
P

S
te

v
e
n

s

S
D

O
C

o
n
n

o
r

A
S

c
a

lia

A
M

K
e
n

n
e
d

y

D
H

S
o

u
te

r

C
T

h
o

m
a
s

R
B

G
in

s
b
u

rg

S
G

B
re

y
e

r



 18 

was described previously. Namely, preliminary assumptions about the voters (or even their 

votes) do not need to be perfectly operationalized from the onset. Instead, we can rely on optimal 

classification to iteratively optimize the rank order that is reflective of the justices' comparative 

voting behaviors.  

 Perhaps with the exception of Justice Ginsburg’s location as a comparable moderate 

when historically she is seen as more liberal, the remaining locations of the justices in the rank 

ordering appear very neatly reflective of historical accounts. Justice Blackmun, who is 

historically regarded as a justice who became increasingly more likely to abandon his initial 

conservative preferences as his tenure continued, is indeed found to be more liberal than 

conservative. We can make a similar remark of Justice O’Connor who, while the first woman on 

the Court and responsible for landmark legislation like upholding the core protections of female 

reproductive rights through Planned Parenthood v. Casey’s (1992) “undue burden” standard, 

was nonetheless considered a reliable conservative for much of her tenure. It is possible to offer 

similar distinctions to virtually every justice on the scale, which at minimum speaks to its 

accuracy, at least in terms of normative historical assumptions.   

IV. Comparing Optimal Classification to Statistical Techniques 

As mentioned previously, there are definitive benefits for using the optimal classification 

approach as an introduction to spatial voting models. For one, no prior knowledge of a case's (or 

roll call’s) disposition is entirely necessary. For the Rehnquist Court example, I was able to code 

yea and nay as liberal or conservative voting positions, but this knowledge is not a necessary 

component for optimally classifying. We could have just as easily reversed the meaning of yea 

and nay to conservative versus liberal, or alternatively just denoted it as being a majority-

coalition vote or a minority-coalition vote. So long as we know how the justices vote reflective 
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of each other, we can optimally classify. Further, and perhaps importantly, the computational 

methodology is noticeably easier to comprehend than an advanced statistical approach like those 

used in Bayesian models like Martin-Quinn (2002) or NOMINATE (1985, 2001, 2001). So much 

to a point where optimally classifying in a single dimension could theoretically be done by hand, 

though R provides an easy-to-use suite of packages and commands to drastically expedite the 

process for larger sets of voters and votes.  

 However, while there are benefits in terms of ease, there are likewise some potential 

downsides. Namely, the benefit of using a computational approach as opposed to a statistical one 

means that the technique produces an ordinal ranking, rather than a cardinal ranking. Further, 

because the procedure is non-parametric, there is no incorporation of error to derive confidence 

intervals.11 As such, while we might know that Justice Thomas was more conservative than 

Justice Brennan based on Figure 2, the means of interpreting their ideological differences are 

rooted in reference rather than distance. To illustrate, we can use optimal classification to denote 

that Justice Thomas was more conservative than Justices Scalia and Powell, who in turn were 

both more conservative than Justice Brennan. We cannot say that Justice Thomas was 11 units 

more conservative than Justice Brennan. In essence, the scale means nothing in terms of cardinal 

distance – it is purely an optimal rank ordering. Yet, if the goal is an introduction to 

measurement or simply to derive a normative understanding of the justices’ comparative 

ideological alignments, then optimal classification serves as a worthwhile option. Alternatively, 

if cardinality is a necessary concern, then a statistically driven approach is likely required.  

 
11 Note: There is a way to incorporate random error into optimal classification using 

bootstrapping, though I do not explore it here. For a more in-depth discussion, see Poole 2005.  
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 Another natural question that might emerge is how optimal classification actually 

compares to these more advanced scaling techniques. Poole and Rosenthal (2001) offer some 

keen observations on this topic. Analyzing legislators who served in Congress between 1789 and 

1998, they note improvements on correct classification by optimal classification compared to 

DW-NOMINATE (Dynamic, Weighted, Nominal Three-Step Estimation).12  They note how the 

optimal classification of the data "improves correct classification over DW-NOMINATE by 

about 2% for the House, and about 3% for the Senate” (p. 10).  However, this is not entirely 

surprising considering that NOMINATE aims to maximize a likelihood function rather than 

optimize correct classifications. Even then, they still produce similar legislator configurations 

that correlate above 95% in both chambers.  

To test this on Supreme Court data, I compare the optimal classification results to W-

NOMINATE (Weighted, Nominal Three-Step Estimation) using the same data from the 

Rehnquist Court. Both approaches incorporate basic assumptions of voting. Specifically, they 

both assume that voters vote sincerely reflective of single-peaked and symmetric preferences. 

Likewise, neither require a complex understanding of the voting positions they’re measuring nor 

will either push legislators to the extremes of the scale. However, while the underlying goal of 

scaling votes and voters in a space is understandably similar to optimal classification, there are a 

few important distinctions. Perhaps most importantly, W-NOMINATE employs a probabilistic 

 
12 Note: DW-NOMINATE is a dynamic representation of the W-NOMINATE framework, which 

was developed by McCarty, Poole, and Rosenthal (1997) and allows for cross-comparison of 

voters in a common space using a bundling of issues constraint based generally on perceptions of 

voter liberalism or conservatism. This is especially useful when trying to measure the dynamics 

of ideology among actors who never voted in the same period. As Poole and Rosenthal (2001) 

illustrate, “We can thus claim that Jesse Helms is more conservative than Robert Taft, Sr. even 

though they never served in the Senate together” (p. 8).  
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voting model using the logistic distribution function. Further, it incorporates a utility function 

with both a random and deterministic set of components that are distributed normally. 13   

I reproduce the optimal classification rank ordering of the Rehnquist Court from Figure 2 

below in Figure 3 alongside the results using W-NOMINATE.14 There are two immediate 

distinctions to note between the measures. First, W-NOMINATE produces cardinality in the 

ordering of the justices. They are no longer spaced in an even rank ordering. Rather, they are 

separated by cardinal distances where we can derive the justices’ ideological differences based 

on a numerical representation. For example, where we could originally say that Justice 

(Thurgood) Marshall was more liberal than Justice Stevens, we can now offer a numerical value 

to that distance of (0.351) units in the space.15  

 
13 For more information on the NOMINATE methodology, see Poole and Rosenthal (1985) and 

Poole (2005).  
14 Note: The R-Code for the W-NOMINATE estimation can be found in Appendix A. 
15 Note: In the example, Justice Marshall’s ideal point was measured as (-1.0) while Justice 

Stevens’s was (-0.649).  
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Figure 3. Optimal Classification and W-NOMINATE of the Rehnquist Court (1986-2005) 

Optimal Classification 

 

W-NOMINATE 

 

 

The second distinction to note is that there are some nominal differences in the location 

of the justices relative to each other. For example, the W-NOMINATE measure denotes Justice 

Thomas as the most conservative member rather than Chief Justice Rehnquist. In fact, with the 

exceptions of Justices Marshall, Brennan, Stevens, and Blackmun, there are some nominal shifts 

for all justices. This all being considered, the nominal differences between the two are not 

entirely surprising. As noted previously, NOMINATE focuses on maximizing the likelihood 

function rather than optimally classifying the rank order. More emphasis should instead be 

placed on the correlation between the relative rankings of the justices in both spaces, which is 

found here to be at approximately p = 74%.  
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Barring some nominal differences in relative positioning, the next question should be 

how they compare in terms of classification. Again, it should be expected that optimal 

classification performs better at correctly classifying legislators – and this expectation is fulfilled 

here with Supreme Court justices. Table 5 recreates the performance classification metrics from 

optimal classification from Table 4 and compares it directly to W-NOMINATE.  

Table 5. Comparing the Optimal Classification to W-NOMINATE (Rehnquist Court) 

  

V. Discussion 

This research note aimed to accomplish two overarching goals. First, it aimed to offer a less-

demanding introduction to spatial voting models through the optimal classification procedure 

and applying it to a subsection of political science beyond Poole’s original intent of legislative 

roll call behaviors. Specifically, I offered a detailed description of the optimal classification 

procedure, including both its manual application and a computational demonstration of its power 

with larger populations of data using over 1,700 cases from the Rehnquist Court (1986-2005). 

The purpose of which was to illustrate to students experiencing their first introduction to spatial 

voting models that computational methods like optimal classification do not require advanced 

statistical knowledge to produce accurate rank orderings of voters. In some cases, all that is 

needed is a pencil and a sturdy eraser.  

Measure Optimal Classification W-NOMINATE Comparison 

Correct Yea 93.24 89.28 +3.96 

Wrong Yea 6.76 10.72 -3.96 

Correct Nay 14.27 17.04 -2.77 

Wrong Nay 85.73 82.96 +2.77 
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Second, I aimed to illustrate that the computational results obtained from optimal 

classification are not wholly inferior to more-advanced methods like NOMINATE. Using the 

Rehnquist Court, I was able to illustrate that optimal classification actually improved the 

classification procedure. Granted, the goal of NOMINATE is to maximize the likelihood 

function rather than the optimal ordering. Likewise, optimal classification does present a handful 

substantive downsides. For one, the rank ordering produced is ordinal rather than cardinal – 

meaning that we cannot derive numerical representations of the differences separating voters like 

we can with one of the statistical approaches. That being said, if the goal is to receive an 

introduction to spatial models of voting, or alternatively if the desire is simply to be able to 

derive which members of a legislature, court, or another group of voters compare to each other, 

optimal classification surely provides substantive benefits. It is my hope that this brief work 

removes some of the hesitance among emerging scholars to test the waters of spatial voting.  
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